An Efficient Dynamic hp-Discontinuous Galerkin Formulation for Time-Domain Electromagnetics

ESCO 2012, Pilsen, Czech Republic

Sascha Schnepp
Outline

- Semi-Discrete Formulation of the Discontinuous Galerkin (DG) Method for Maxwell’s Equations
 - Weak formulation
 - A priori error estimation
- The DG Method on Non-Regular Meshes
 - Flux computation
 - Efficiency Tweaks
- Adaptive Mesh Refinement
- Examples
We consider Maxwell’s equations:

\[\nabla \times \mathbf{H} = \frac{\partial}{\partial t} \mathbf{D} + \mathbf{J} \quad \text{Ampere’s law} \]

\[\nabla \times \mathbf{E} = -\frac{\partial}{\partial t} \mathbf{B} \quad \text{Faraday’s law} \]

\[\nabla \cdot \mathbf{D} = \rho \quad \text{Gauss’ law} \]

\[\nabla \cdot \mathbf{B} = 0 \quad \text{Gauss’ law of magnetic fields} \]

Constitutive equations

- \(\mathbf{B} = \mu \mathbf{H} \)
- \(\mathbf{D} = \epsilon \mathbf{E} \)
- \(\mathbf{J}_\kappa = \kappa \mathbf{E} \)

Units

- Electric field: \(\mathbf{E} \) = V/m = Volt / meter
- Electric flux density: \(\mathbf{D} \) = As/m² = Ampère second / meter²
- Magnetic field: \(\mathbf{H} \) = A/m = Ampère / meter
- Magnetic flux density: \(\mathbf{B} \) = Vs/m² = Volt second / meter²
- Current density: \(\mathbf{J} \) = A/m² = Ampère / meter²
DG for Maxwell -- Semi-discrete Formulation

Weak semi-discrete DG formulation of Maxwell’s equations in three-dimensional space:

Find e_P^i and h_P^i such that $\forall j = 1..N$, $\forall q = 1..P$

\[
\sum_{i,p} \delta_{ij} \left(\int_{\Omega_j} d^3 r \mu \varphi_i^p \varphi_j^q \right) d_t h_i^p + \int_{\partial \Omega_j} d^2 r (n \times \tilde{E}^*) \varphi_j^q - \sum_{i,p} \delta_{ij} \left(\int_{\Omega_j} d^3 r \varphi_i^p (\nabla \varphi_j^q) \right) \times e_i^p = 0
\]

\[
\sum_{i,p} \delta_{ij} \left(\int_{\Omega_j} d^3 r \varepsilon \varphi_i^p \varphi_j^q \right) d_t e_i^p - \int_{\partial \Omega_j} d^2 r (\tilde{n} \times \tilde{H}^*) \varphi_j^q + \sum_{i,p} \delta_{ij} \left(\int_{\Omega_j} d^3 r \varphi_i^p (\nabla \varphi_j^q) \right) \times h_i^p = 0
\]

Mass term **Flux term** **Rigidity term**

with basis functions φ_i^p and test functions $\varphi_j^q \in H^1$
DG for Maxwell -- Semi-discrete Formulation

A priori error estimation

- We consider the representation of two sets of initial conditions in the FE space
 1. Normal distribution \((C^\infty)\)
 2. Trapezoidal distribution \((C^0)\)

- Why is there such a BIG difference?
 - Smoothness prerequisite violated
 - Considering the slope...
A priori error estimation

- We consider the representation of two sets of initial conditions in the FE space
 1. Normal distribution \((C^\infty)\)
 2. Trapezoidal distribution \((C^0)\)

- Consider the mesh dependent norm [Bey, Oden (1996) (simplified form)]

\[
\|E\|_{hp} \leq C_1 \left\{ \sum_i \left[C_2 \frac{(\Delta x)^{2\nu - 1}}{p_i^{2s-2}} \|\tilde{U}\|_2 \right] \right\}^{1/2}
\]

where \(\nu = \min(p_i + 1, s)\)

and \(s\) is the regularity index
Outline

- Semi-Discrete Formulation of the Discontinuous Galerkin (DG) Method for Maxwell’s Equations
 - Weak Formulation
 - A priori error estimation
- The DG Method on Non-Regular Meshes
 - Flux computation
 - Efficiency Tweaks
- Adaptive Mesh Refinement
- Examples
DG for Maxwell -- Non-regular meshes

High level hanging nodes using precomputed fluxes

- Hanging nodes can easily be included in the DG framework
DG for Maxwell -- Non-regular meshes

High level hanging nodes using precomputed fluxes

- Hanging nodes can easily be included in the DG framework

Elements of h-refinement level H

Elements of h-refinement level $H-1$
DG for Maxwell -- Non-regular meshes

High level hanging nodes using precomputed fluxes

- Flux from right to left

Elements of h-refinement level H

Elements of h-refinement level H-1
High level hanging nodes using precomputed fluxes

- Split into four (generally N) partial fluxes according to element overlap
DG for Maxwell -- Non-regular meshes

High level hanging nodes using precomputed fluxes

- Flux from left to right
High level hanging nodes using precomputed fluxes

- Combine four (generally \(N \)) partial fluxes into one according to element overlap
DG for Maxwell -- Non-regular meshes

High level hanging nodes using precomputed fluxes

- Combine four (generally N) partial fluxes into one according to element overlap
DG for Maxwell -- Non-regular meshes

- **Flux term** (for box elements)

\[
\int_{\partial \Omega_j} d^2 r (\mathbf{n} \times \mathbf{\tilde{E}}^*) \varphi_j^q = \left(\int_{\partial \Omega_j} (n_y \mathbf{\tilde{E}}_z^* - n_z \mathbf{\tilde{E}}_y^*) \varphi_j^q d^2 r \right) + \left(\int_{\partial \Omega_j} (n_z \mathbf{\tilde{E}}_x^* - n_x \mathbf{\tilde{E}}_z^*) \varphi_j^q d^2 r \right) + \left(\int_{\partial \Omega_j} (n_x \mathbf{\tilde{E}}_y^* - n_y \mathbf{\tilde{E}}_x^*) \varphi_j^q d^2 r \right)
\]

\[
\int_{\partial \Omega_{j,y}^+} \mathbf{\tilde{E}}_z^* \varphi_j^q dxdz \quad \Rightarrow \quad \int_{\partial \Omega_{j,y}^+} \left(\sum_{i,p} e_{i,z}^p \varphi_i^p \right)^* \varphi_j^q dxdz
\]

\[
= \frac{1}{2} \sum_p \int_{\partial \Omega_{j,y}^+} \left(e_{j,x}^p \varphi_j^p \varphi_{j,x}^p + e_{j,y}^p \varphi_j^p \varphi_{j,y}^p \right) \varphi_j^q dxdz
\]

\[
= \frac{1}{2} \sum_p \int_{\partial \Omega_{j,y}^+} \left(e_{j,x}^p \varphi_j^p(x) \varphi_{j,x}^p(1) \varphi_j^p(z) + e_{j,y}^p \varphi_j^p(x) \varphi_{j,y}^p(-1) \varphi_j^p(z) \right) \varphi_j^q dxdz
\]
DG for Maxwell -- Non-regular meshes

- **Flux term**

\[
\frac{1}{2} \sum_p \int_{\partial \Omega^{j,y}_{+}} \left(e_j^p \varphi_j^{px}(x) \varphi_j^{py}(1) \varphi_j^{pz}(z) + e_{\text{ngbr}}^p \varphi_{\text{ngbr}}^{px}(x) \varphi_{\text{ngbr}}^{py}(-1) \varphi_{\text{ngbr}}^{pz}(z) \right) \varphi_j^q \, dx \, dz
\]

- Split in integral terms of boundary values (1, -1)
- and integrals of the form

1. \[
\int_{x_j} \varphi_j^{px}(x) \varphi_j^{qx}(x) \, dx
\]

2. \[
\int_{x_j \cap x_{\text{ngbr}}} \varphi_{\text{ngbr}}^{px}(x) \varphi_j^{qx}(x) \, dx
\]

Complete overlap of basis and test function (same element)

Partial overlap of basis and test function (neighboring element)
DG for Maxwell -- Non-regular meshes

- **Flux term**

\[
\frac{1}{2} \sum_p \int_{\partial \Omega^+_{j,y}} \left(e_j^p \varphi_j^{px} (x) \varphi_j^{py} (z) + e_{ngbr} \varphi_{ngbr}^{px} (x) \varphi_{ngbr}^{py} (-1) \varphi_{ngbr}^{pz} (z) \right) \varphi_j^q \, dx \, dz
\]

Partial overlap:

2. \[\int_{x_j \cap x_{ngbr}} \varphi_{ngbr}^{px} (x) \varphi_j^{qx} (x) \, dx \]

Partial overlap of basis and test function (neighboring element)

\[\Delta H = 1 \]

\[
\int_{x_{j0} + \frac{1}{\Delta H+1} \Delta x}^{x_{j0} + \frac{2}{\Delta H+1} \Delta x} \varphi_j^{px} (x) \varphi_j^{qx} (x) \, dx
\]

\[
\int_{x_{j0} + \frac{0}{\Delta H+1} \Delta x}^{x_{j0} + \frac{1}{\Delta H+1} \Delta x} \varphi_j^{px} (x) \varphi_j^{qx} (x) \, dx
\]
DG for Maxwell -- Non-regular meshes

- **Flux term**

\[
\frac{1}{2} \sum_p \int_{\partial \Omega_{j,y}^+} \left(e_j^p \varphi_j^p (x) \varphi_j^p y (1) \varphi_j^p z (z) + e_{\text{ngbr}}^p \varphi_{\text{ngbr}}^p (x) \varphi_{\text{ngbr}}^p y (-1) \varphi_{\text{ngbr}}^p z (z) \right) \varphi_{j}^q dxdz
\]

- **Partial overlap:**

\[
2. \int_{x_j \cap x_{\text{ngbr}}} \varphi_{\text{ngbr}}^p (x) \varphi_j^q x (x) dx
\]

\[\Delta H = 2\]

\[
\int_{x_{j0} + \frac{1}{\Delta H+1} \Delta x}^{x_{j0} + \frac{2}{\Delta H+1} \Delta x} \varphi_j^p x (x) \varphi_{j}^q x (x) dx
\]

\[
\int_{x_{j0} + \frac{2}{\Delta H+1} \Delta x}^{x_{j0} + \frac{3}{\Delta H+1} \Delta x} \varphi_j^p x (x) \varphi_{j}^q x (x) dx
\]

\[
\int_{x_{j0} + \frac{3}{\Delta H+1} \Delta x}^{x_{j0} + \frac{4}{\Delta H+1} \Delta x} \varphi_j^p x (x) \varphi_{j}^q x (x) dx
\]
DG for Maxwell -- Non-regular meshes

- **Flux term**

\[
\frac{1}{2} \sum_p \int_{\partial \Omega^+_{j,y}} \left(e^p_j \varphi^p_j(x) \varphi^p_y(1) \varphi^p_z(z) + e^p_{\text{ngbr}} \varphi^p_x(\text{ngbr}) \varphi^p_y(\text{ngbr})(-1) \varphi^p_z(\text{ngbr}) \right) \varphi^q_j \, dx \, dz
\]

- **Partial overlap:**

2. \[
\int_{x_j \cap x_{\text{ngbr}}} \varphi^p_{\text{ngbr}}(x) \varphi^q_j(x) \, dx
\]

$\Delta H = 3$

\[
\int_{x_j + \frac{1}{2} \Delta x}^{x_j + \frac{1}{2} \Delta x} \varphi^p_j(x) \varphi^q_j(x) \, dx
\]

Partial overlap of basis and test function (neighboring element)
DG for Maxwell -- Non-regular meshes

- **Flux term**

 - Precompute (analytically) and tabulate
 \[
 \int_{x_{j0} + \frac{h}{\Delta H+1} \Delta x}^{x_{j0} + \frac{h+1}{\Delta H+1} \Delta x} \varphi^p_j(x) \varphi^q_j(x) \, dx
 \]

 - for all \(\Delta H \) (< 7 => \((1/2)^6)^2 = 4096\) neighboring elements) and
 - for all combinations of partial overlaps for the respective \(\Delta H \)
 - all combinations of basis and test functions \((p_x,q_x) \)

 - 3-dimensional matrices of size \(\Delta H \times P \times P \)
DG for Maxwell -- Non-regular meshes

Flux term

- Precompute (analytically) and tabulate
 \[\int_{x_j_0 + \frac{h}{\Delta H + 1} \Delta x}^{x_j_0 + \frac{h + 1}{\Delta H + 1} \Delta x} \varphi_{j}^{p_x}(x) \varphi_{j}^{q_x}(x) \, dx \]
 - for all \(\Delta H (< 7 \Rightarrow (1/2^6)^2 = 4096 \) neighboring elements) and
 - for all combinations of partial overlaps for the respective \(\Delta H \)
 - all combinations of basis and test functions \((p_x, q_x) \)
- 3-dimensional matrices of size \((\Delta H \times P \times P) \)
- No on-the-fly quadratures!
- Flux computation on non-conformingly refined meshes reduces to evaluating matrix-vector products
- CPU time differs by a factor of several thousands for high orders and high refinement levels
Outline

- Semi-Discrete Formulation of the Discontinuous Galerkin (DG) Method for Maxwell’s Equations
 - Weak Formulation
 - A priori error estimation
- The DG Method on Non-Regular Meshes
 - Flux computation
 - Efficiency Tweaks
- Adaptive Mesh Refinement
- Examples
DG for Maxwell -- Adaptive mesh refinement

- **h-Refinement**
 - Approximation in interval I_i is projected to intervals $I_{i,\text{I}}$ and $I_{i,\text{II}}$

- Local projection matrices P_{I} and P_{II}:

 $P_{\text{I}}^{qp} = (\varphi^p, \psi^q_\text{I}) / (\psi^q_\text{I}, \psi^q_\text{I})$
 $P_{\text{II}}^{qp} = (\varphi^p, \psi^q_\text{II}) / (\psi^q_\text{I}, \psi^q_\text{II})$

\[
\begin{align*}
\mathbf{u}_{i,\text{I}} &= P_{\text{I}} \mathbf{u}_i \\
\mathbf{u}_{i,\text{II}} &= P_{\text{II}} \mathbf{u}_i
\end{align*}
\]
DG for Maxwell -- Adaptive mesh refinement

- **h-Coarsening**
 - The approximation in I_i is considered piece-wise defined in $I_{i, I}$ and $I_{i, II}$

- **Definition of the projection matrix P_c**:

 \[
 P_{c, q} = \frac{\psi^q_I + \psi^q_{II}, \varphi^p}{(\varphi^p, \varphi^p)} = \frac{\psi^q_I, \varphi^p + (\psi^q_{II}, \varphi^p)}{(\varphi^p, \varphi^p)} = P_{c, q}^I + P_{c, q}^{II}
 \]

 \[
 u_i = P_{c, I} u_{i, I} + P_{c, II} u_{i, II}
 \]
DG for Maxwell -- Adaptive mesh refinement

- p-Adaptation
 - Mathematically trivial for sets of hierarchical basis functions
 - p-enrichment
 - add higher order coefficients
 - initialized by zero
 - p-reduction
 - delete high order coefficients
 - other coefficients remain unaltered
 - Memory and time efficient implementation ‘tricky’ though

- Stability of the full hp-adaptive algorithm in an energy norm proven [J Comp Appl Math, 2011]
DG for Maxwell -- Adaptive mesh refinement

- ρ-adaptive Simulation of a horn antenna

Contour plot of electric field in the horn
DG for Maxwell -- Adaptive mesh refinement

- p-adaptive Simulation of a horn antenna

Element orders for time instance of previous plot:
$P = 1, P = 2, P = 3, P = 4$
DG for Maxwell -- Adaptive mesh refinement

- \(p \)-adaptive Simulation of a horn antenna

<table>
<thead>
<tr>
<th>Method</th>
<th>Grid</th>
<th>(P_{\text{min}}/P_{\text{max}})</th>
<th>Memory / MB</th>
<th>rel. Error</th>
<th>Comp. Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>DG</td>
<td>61 × 41 × 141</td>
<td>4 / 4</td>
<td>2007</td>
<td>—</td>
<td>328 min</td>
</tr>
<tr>
<td>FIT</td>
<td>81 × 61 × 181</td>
<td>—</td>
<td>170</td>
<td>0.049</td>
<td>2:24 min</td>
</tr>
<tr>
<td>DG</td>
<td>31 × 21 × 81</td>
<td>0 / 4</td>
<td>31-72</td>
<td>0.039</td>
<td>0:47 min</td>
</tr>
<tr>
<td>DG</td>
<td>31 × 21 × 81</td>
<td>1 / 4</td>
<td>46-68</td>
<td>0.037</td>
<td>1:31 min</td>
</tr>
<tr>
<td>DG</td>
<td>31 × 21 × 81</td>
<td>0 / 3</td>
<td>29-51</td>
<td>0.042</td>
<td>0:20 min</td>
</tr>
<tr>
<td>DG</td>
<td>31 × 21 × 81</td>
<td>1 / 3</td>
<td>41-62</td>
<td>0.039</td>
<td>0:51 min</td>
</tr>
<tr>
<td>DG</td>
<td>61 × 41 × 141</td>
<td>1 / 3</td>
<td>178-266</td>
<td>0.013</td>
<td>9:57 min</td>
</tr>
</tbody>
</table>
Outline

- Semi-Discrete Formulation of the Discontinuous Galerkin (DG) Method for Maxwell’s Equations
 - Weak Formulation
 - A priori error estimation
- The DG Method on Non-Regular Meshes
 - Flux computation
 - Efficiency Tweaks
- Adaptive Mesh Refinement
- Examples
Example -- A horn antenna

A setup for testing dynamic mesh refinement

- **Step 1:** Find an initial mesh s.t. an error tolerance is met (< 1e-5)
Example -- A horn antenna

INFO: Grid information: #DoF (e+h): 57'276

Refinement strategy is **HP_ANISO: Anisotropic** h and p refinement
Example -- A horn antenna

INFO: Grid information: #DoF (e+h): 645'882

Refinement strategy is HP_ISO: Isotropic h and p refinement
Example -- A horn antenna

A setup for testing dynamic mesh refinement

- **Step 2**: Time-domain simulation

Broadband pulse (10-30 GHz)

Horn antenna (cut view)

Radar reflector
Example -- A horn antenna

A setup for testing dynamic mesh refinement

- Implementation of an error estimator based on reference solutions (as for obtaining the initial mesh) is underway
- Currently, solution based physical indicators are employed for controlling the refinement
- In this example it is energy density
Total propagation distance ≈ 60 wavelengths

Up to 39 M DoF
(7.5 bn w/o adaptivity)
Summary

- Presented an efficient framework for performing hp-adaptive simulations with the DG method
- ... the underlying idea of hp-adaptivity
- ... but no details of the error or smoothness estimation (which is based on the concept of ‘reference solutions’) please come to speak with me if you are interested

- An hp-adaptive code should allow for anisotropic refinement as it yields substantial savings in computational resources
- A careful implementation has to be done in order to obtain reasonable performance
An Efficient Dynamic *hp*-Discontinuous Galerkin Formulation for Time-Domain Electromagnetics

ESCO 2012, Pilsen, Czech Republic

Sascha Schnepp